BOARD OF INTERMEDIATE EDUCATION, KARACHI

$\underline{Chemistry-I}$

SECTION – A (Multiple Choice Questions)

Note: This section consists of 33 part questions and all are to be answered. Each question carries one mark. (33 Marks)

Q.1			
(i)	The total number of ions in one form (a) 6.02×10^{23}	(b) 12.04 x 10 ²³	
	(c) 18.06 x 10 ²³	(d) 24.08 x 10 ²³	
(ii)	When 7.0 x 10 ¹² is multiplied by 2.0 x (a) 1.4 x 10 ⁹ (c) 1.4 x 10 ⁻¹⁵	(10^{-3}) , the answer will be: (b) 1.4 x 10^{10} (d) 1.4 x 10^{-36}	
(iii)	Quantum number value for 3d orbita (a) $n = 2$, $\ell = 1$ (c) $n = 3$, $\ell = 3$	als are: (b) $n = 3$, $\ell = 2$ (d) $n = 2$, $\ell = 3$	
(iv)	The range of wavelength of x-rays lie (a) 0.1Å to 10Å (c) 100Å to 500Å	es between; (b) 10Å to 100Å (d) 4000Å to 7000Å	
(v)	Bohr's theory cannot be applied on: (a) H (c) He ⁺¹	(b) H ⁺ (d) Li ⁺²	
(vi)	What is the hybrid state of carbon in (a) sp ³ (c) sp	C ₂ H ₂ molecule: (b) sp ² (d) dsp ²	
(vii)	This molecule has zero dipole mome (a) C_6H_6 (c) H_2S	nt: (b) NH ₃ (d) NO ₂	
(viii)	The geometry of BF ₃ is planar trigonal, its bond angle should be: (a) 104.5° (b) 109.5° (c) 107° (d) 120°		
(ix)	VBT tells us about all of the following (a) Bond length (c) Bond energy	g facts except: (b) Bond strength (d) Bond order	
(x)	principle of: (a) Common ion effect	ners and refrigerators are working on the (b) Joule-Thomson effect (d) Lo Chatlier's principle	
	(c) Pauli's exclusion principle	(d) Le-Chatlier's principle	

(xi)	The rate of diffusion of Helium (He) com (a) 0.5 time (c) Three times	npared with CH4 is: (b) Two times (d) Four times
(xii)	The molar volume of Oxygen (O₂) is high (a) 100°C and 1 atm (c) 200°C and 0.5 atm	nest at: (b) 25°C and 2 atm (d) 40°C and 0.5 atm
(xiii)	Plasma is the fourth state of matter, it c (a) Neutral molecules (c) Negative electrons	onsists of: (b) Positive ions (d) All of these
(xiv)	Cooking time is reduced in a pressure co (a) Boiling point of water rises (c) Vapor pressure of liquid is reduced	ooker because: (b) Heat is stored in pressure cooker (d) Heat is uniformly distributed
(xv)	Which of the following molecule posses (a) H ₂ (c) CH ₄	s strongest London forces: (b) He (d) Ne
(xvi)	Which of the following pair of compoun (a) NaCl and KNO ₃ (c) NaNO ₃ and CdS	ds may represents isomorphism: (b) MgO and NaF (d) NaF and CaCO ₃
(xvii)	A big crystal can be cut or split into phenomenon is called: (a) Anisotropy (c) Symmetry	o smaller size of identical shape; this (b) Cleavage (d) Isomorphism
(xviii)	Kp = Kc when Δn is equal to: (a) zero (c) -1	(b) 1 (d) 2
(xix)	The solubility of MgCl ₂ is X, its Ksp will b (a) x ² (c) 4x ²	e: (b) 2x² (d) 4x³
(xx)	The unit of rate constant for the first ord (a) Ms ⁻¹ (c) M ⁻¹ s ⁻¹	der reaction is: (b) s ⁻¹ (d) M ⁻² s ⁻¹
(xxi)	Amphoteric substance among the follow (a) K ₂ O (c) ZnO	ving is: (b) CO ₂ (d) MgO
(xxii)	Which of the following salt is hydrolyzed (a) Na ₂ SO ₄ (c) NH ₄ Cl	d in water: (b) KCl (d) NaNO3
(xxiii)	Conjugate base of HCO ₃ is: (a) H ₂ CO ₃ (c) H ⁺	(b) CO ₃ ⁻² (d) H₂O

(xxiv)	The decomposition of H ₂ O ₂ is (a) Ethanol (c) MnO ₂	inhibited by: (b) Glycerine (d) V₂O₅	
(xxv)	The rate constant of a reactio (a) Temperature (c) Time of reaction	n depends upon: (b) Initial concentration (d) Extent of reaction	
(xxvi)	Effect of pressure change play (a) Solid into liquid (c) Gas into liquid	gnificant role in the solubility of: (b) Liquid into liquid (d) All of them	
(xxvii)	Milk is an example of this type (a) Gel (c) Emulsion	e of colloid: (b) Aerosol (d) Foam	
(xxviii)	Parts per trillion means: (a) 10 ³ (c) 10 ⁹	(b) 10 ⁶ (d) 10 ¹²	
(xxix)	Which of the following enthal (a) Enthalpy of formation (c) Enthalpy of combustion	py change is always negative: (b) Enthalpy of decomposition (d) Enthalpy of reaction	
(xxx)	Which of the following is not a (a) Pressure (c) Internal energy	a state function of a system? (b) Enthalpy (d) Work done	
(xxxi)	Oxidation number of Cr in $Na_2Cr_2O_7$ is: (a) + 3		
(xxxii)	Galvanized rode of iron is coated with: (a) Nickel (b) Zinc (c) Chromium (d) Carbon		
(xxxiii)	KOH is used as electrolyte in: (a) Lead accumulator (c) Alkaline battery	(b) Fuel cell (d) Dry cell	

SECTION – B (Short Answered Questions)

Note: Attempt any eight parts questions. All questions carry equal marks. (32 Marks)

Q.2

- (i) (a) What is meant by actual yield? Why it is always less than theoretical yield in a reaction.
 - (b) The volume of a sample of Nitrogen gas (N_2) at STP is 1120cm^3 ; calculate the mass and number of molecules of N_2 in the sample.
- (ii) Aluminum Sulphide is prepared by the reaction of Aluminum metal and sulphur powder at elevated temperature.

$$2Al + 3S \rightarrow Al_2S_3$$

If 135g Aluminum and 160g sulphur are taken for the reaction, calculate what mass of Al_2S_3 will be formed.

(iii) State Pauli and Hund's rule. Write the electronic configuration of the following species:

- (iv) Draw molecular orbital diagram of O_2 molecule. Find bond order of O_2 molecule and explain why O_2 molecule is paramagnetic?
- (v) Oxygen gas was collected over water at 24°C and a total pressure of 762 torr. If the volume of the gas collected was 300cm³. Calculate the number of moles and the mole fraction of oxygen gas in the mixture (the vapour pressure of water at 22.4 torr).
- (vi) (a) What is Viscosity? Why viscosity decreases with the rise of temperature?
 - (b) Differentiate between any one of the following:
 - * Isomorphism and polymorphism * Ionic solids and covalent solids
- (vii) State Le-Chatlier principle and discuss its application in the synthesis of ammonia by Haber's process.
- (viii) What is Buffer solution? Explain how it resists the change of pH by adding small amount of acid and base.
- (ix) Enlist various factors which influence on the rate of chemical reaction and describe the effect of temperature on reaction rate.
- (x) The reaction 2NO + $Cl_2 \rightarrow$ 2NOCl was studied at 25°C. the following results were obtained.

Experiment	Initial concentr	Initial rate	
No.	NO	Cl₂	(mol/dm³.s)
1	0.1	0.1	2.52 x 10 ⁻³
2	0.1	0.2	5.04 x 10 ⁻³
3	0.2	0.1	10.08 x 10 ⁻³

Determine the rate law and order of reaction.

- (xi) (a) How is a true solution differentiate from suspension.
 - (b) A solution is prepared by dissolving 45g glucose in 72g water determine mole fraction of glucose and water in the solution.
- (xii) State Raoult's law an derive its mathematical expression in three forms.
- (xiii) State and explain First Law of thermodynamics. Derive pressure-volume work of a system.
- (xiv) Calculate the standard enthalpy of formation of carbon disulphide from the given data.

C + 2S CS₂ (
$$\Delta H_f = ?$$
)
C + O₂ CO₂ ($\Delta H = -393.5 \text{ KJ/mol}$)
S + O₂ ($\Delta H = -296.8 \text{ KJ/mol}$)
CS₂ + 3O₂ ($\Delta H = -1075 \text{ KJ/mol}$)

SECTION - C (Detailed Answer Questions)

Note: Answer any two questions. All questions carry equal marks.

(20 Marks)

- Q.3 (a) What is an Ideal gas? What are the causes of deviation of real gas from ideal behavior? Explain these deviations at low temperature and high pressure.
 - (b) Derive an expression for the radius of hydrogen atom in the nth orbit by using Bohr model.
- Q.4 (a) Write down the postulates of valence shell electron pair repulsion theory (VSEPR) and predict the shape of the following molecules on the bases of VSEPR theory.

(b) For the reaction

$$2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)} \text{ (ΔH = -ve)}$$

If there are 5 moles of SO₂, 3 moles of O₂ and 8 moles of SO₃ are present at equilibrium in a 1dm³ flask, at 323K temperature, calculate its Kc and Kp.

- Q.5 (a) What are colligative properties of solution explain elevation of boiling point and depression of freezing point.
 - (b) Define redox reaction and balance any one of the following equations by ion electron method.

$$Fe^{+2} + Cr_2O_7^{-2} + H^+ \longrightarrow Fe^{+3} + Cr^{+3} + H_2O$$
 (acidic medium)
 $MnO_4^- + SO_3^{-2} \longrightarrow Mn^{+2} + SO_4^{-2}$ (basic medium)
OR

Define electrode potential. Draw a cell diagram of zinc hydrogen galvanic cell. Write down the redox reaction and explain how is the electrode potential of zinc determined.