BOARD OF INTERMEDIATE EDUCATION, KARACHI H.S.C. Annual Examinations 2021

MATHEMATICS PAPER-I (MODEL PAPER)
REVISED (Science Pre - Engineering \& Science General Groups)

Max marks: 50

SECTION A

(Multiple Choice Questions)
Time: 30 minutes

NOTE: This question consists of 25 part questions and all are to be answered. Each part question carries TWO marks.
Q.1. Select the correct answer from the given options.
(i) Let $A=\{0,1\}, B=\{1,2\}, C=\{2,3\}$. Then $A \times(B \cap C)=$:

$$
\left.* \phi *\{(1,3),(0,1)\} *{ }^{2}(0,2),(1,2)\right\} *\{(2,3),(1,1)\}
$$

(ii) If A and B are subsets of a set U such that $A \cup B=U$, then the sets A and B are called.

* Exhaustive sets * Disjoint sets* Equal sets *unequal sets
(iii) Multiplicative inverse of $z=3-4 i$

$$
\text { * } \frac{3}{5}+\frac{i 4}{5}
$$

(iv) Factors of $4 x^{2}+9 y^{2}$ are

$$
*(2 x+i 3 y)(2 x-i 3 y) *(2 x+3 y)(2 x-3 y) *(2 x+3 i y)^{2}
$$

$$
*(4 x+9 y i)(4 x-9 y i)
$$

(v) If $\mathrm{z}_{1}=3+2 \mathrm{i}$ and $\mathrm{z}_{2}=5-2 \mathrm{i}$, then real part of $\mathrm{Z}_{1} \cdot \mathrm{z}_{2}$ is:

$$
* 4 *-19 *-4 * 19
$$

(vi) If $b^{2}-4 a c<0$, then the roots of a quadratic equation are :

$$
\begin{array}{ll}
* \text { equal and complex } & * \text { unequal and complex } \\
* \text { equal and real } & * \text { unequal and real }
\end{array}
$$

(vii) The product of all cube roots of 27 is :

$$
\text { * zero * } 1 \quad * 27 * \omega
$$

(viii) 3 is a root of the equation :

$$
\begin{array}{ll}
* y^{2}-5 y+6=0 & * y^{2}+5 y-6=0 \\
* y^{2}+7 y+12=0 & * y^{2}+4 y+3=0
\end{array}
$$

(ix) If α, β are the roots of the equation $y^{2}-5 y+9=0$, then value of $\sqrt{\frac{\alpha}{\beta}}+\sqrt{\frac{\beta}{\alpha}}$ is :
*0 $\quad * \frac{5}{9}$

* $\frac{5}{3}$
(x) Sum of first n terms of
(xi) $\begin{array}{r}1, x^{2}, 6-x^{2} \\ * \\ 2\end{array}$
(xii) The H.M. betweern $1 / 2$ and $1 / 4$

$$
\text { * } \frac{1}{6}
$$

(xiii) If $1 / 15,1 / 20,1 / 25$ are in H_{8} then $15,20,25$ will be in :

(xiv) The number of ways in which/ persens can be seated around a table is:

$$
* 6!\quad * 7!\quad *{ }^{7} \mathrm{P}_{7} \quad *{ }^{7} \mathrm{C}_{7}
$$

(xv) If $(a+b)^{11}$, then it will contain:

$$
* 11 \text { terms } \quad * 13 \text { terms } \quad * 10 \text { terms } \quad * 12 \text { terms }
$$

(xvi) If $(a+b)^{13}$, then middle terms/middle term will be :

* 7th term \& 8th term
* 8th term \& 9th term
* 8th term
(xvii) If $(\mathrm{a}+\mathrm{b})^{\mathrm{n}} ; \mathrm{n} \varepsilon \mathrm{N}$, then $\mathrm{T}_{\mathrm{r}+1}=: \quad(\mathrm{r}=0,1,2, \ldots \mathrm{n})$
* ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}{ }^{\mathrm{n}} \mathrm{b}^{\mathrm{n}-\mathrm{r}}$
* ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$
* ${ }^{n} \mathrm{C}_{\mathrm{r}+1} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$
* $a^{n-r} b^{r}$
(xviii) Arc length of semi circle of a unit circle is :
* 2π
* 3π
* π
* 1
(xix) $\operatorname{Sin} 2 \theta=$:

$$
* 1+2 \operatorname{Sin}^{2} \theta \quad * 2 \operatorname{Cos}^{2} \theta-1 \quad * \operatorname{Cos}^{2} \theta+\operatorname{Sin}^{2} \theta \quad * 2 \operatorname{Sin} \theta \operatorname{Cos} \theta
$$

(xx) $\quad \operatorname{Cos} u-\operatorname{Cos} v=:$

* $2 \operatorname{Cos} \frac{u+v}{2} \operatorname{Cos} \frac{u-v}{2}$
(xxi) $\operatorname{Tan}\left(\frac{\pi}{2}+\theta\right)$ * $-\operatorname{Cot} \theta$
(xxii) In a $\triangle A B C$

$$
* \frac{\sqrt{3}}{3} a
$$

(xxiii) If in a $\triangle \mathrm{ABC}$, the angle A is /atcstandard position, then Law of cosine is :

* $\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{bc} \operatorname{Cos} \alpha$
* $a^{2}=b^{2}+c^{2}+2 b c \operatorname{Cos} \alpha$
* $b^{2}=a^{2}+c^{2}-b c \operatorname{Cos} \alpha$
* $\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}-2 \mathrm{bc} \operatorname{Cos} \alpha$
(xxiv) In a $\triangle \mathrm{ABC}, \quad \operatorname{Sin} \frac{\alpha}{2}=\ldots$.

$$
* \sqrt{\frac{(s-b)(s-c)}{b c}} * \sqrt{\frac{(s-a)(s-b)}{a b}} * \sqrt{\frac{(s-a)(s-c)}{a c}} * \frac{\Delta}{s-a}
$$

(xxv) If $\operatorname{Sin} x=\frac{1}{2}$, then $x=$
$* \frac{\pi}{3}, \frac{2 \pi}{3}$
$* \frac{\pi}{6}, \frac{5 \pi}{6}$
$* \frac{\pi}{2},-\frac{\pi}{2}$

* $\frac{\pi}{4}, \frac{-\pi}{4}$

TIME: One and Half hours

SECTION ' B '

SHORT -ANSWER QUESTIONS (30 Marks)

Note :Answer any six part questions from this section, selecting two part questions from each question.

Complex numbers and Algebra

Q.2. (i) Solve the complex equation ${ }^{\prime} O_{=}(x+2 y i)^{2}=x$ i
(ii) Show thatz $=1+i$ and $z=1=1$ satisfy the equation $z^{2}-2 z+2=0$
(iii) Find all the cuberoots of 125 , also show that their sum is zero and their product is 125.
(iv) If α, β are the roets of $8 x^{2}-6 x+\beta=0$, form an equation whose roots are $\alpha-3, \beta-3$
Q.3. (i) If ${ }^{\mathrm{n}} \mathrm{P}_{3}=12{ }^{2}{ }^{2} P_{3}{ }^{\circ}$ fincd in
(ii) The $2^{\text {nd }} 31^{\text {st }}$ and the dast terms of an A.P. are $\frac{31}{4}, \frac{1}{2}$ and $\frac{-13}{2}$ respectively. Find then frumber EDE Germas,
(iii) Find the sum of the ARA Germs of $5+55+555+\ldots \ldots .$.
(iv) Prove by mathematical induction.

$$
1^{2}+3^{2}+5^{2}+\ldots \ldots \ldots \ldots \ldots+(2 n-1)^{2}=\frac{1}{3} n(2 n-1)(2 n+1)
$$

$\forall \mathrm{n} \varepsilon \mathrm{N}$.

Trigonometry

Q.4. (i) If a point on the rim of a 16 cm diameter fly wheel travels 7000 meters in a minute, through how many radians does the wheel turn in two seconds?
(ii) Prove that: $1+\cot ^{2} \frac{\pi}{3}=\operatorname{Cosec}^{2} \frac{\pi}{3}$ (without using calculator)
(iii) For any triangle ABC , Derive the law of tangent.

OR

For any triangle ABC , show that $\Delta=\sqrt{s(s-a)(s-b)(s-c)}$
(iv) Solve: $\quad 2 \operatorname{Sin}^{2} \mathrm{x}+2 \sqrt{2} \operatorname{Sin} \mathrm{x}-3=0$

SECTION ' C '

(DETAILED-ANSWER QUESTIONS) (20 Marks)

Note : Attempt any two questions from this sectioon

Q.5. (i) Which term of the H.P. $\neq 6,2, \frac{6}{5}, \ldots$ is equal to $\frac{2}{33}$?
(ii) Find the term independent of x in $\left(\sqrt{x}-\frac{2}{x^{2}}\right)^{10}$

Q.6. (i) Three points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ form a triangle sach that ratio of the measure of their angles is $1: 2: 3$, find the ratio of lengths of the sides.
(ii) Solve the system of the equations
Q.7. (i) Prove any two of the fơAMNDEOEUCATION

$$
\text { (a) } \cos 4 \mathrm{x}=8 \cos ^{4} \mathrm{x}-8 \operatorname{Cos}^{2} \mathrm{x}+1 \quad \text { (b) } \frac{\sin \theta+\operatorname{Sin} \varphi}{\sin \theta-\operatorname{Sin} \varphi}=\frac{\operatorname{Tan} \frac{\theta+\varphi}{2}}{\operatorname{Tan} \frac{\theta-\varphi}{2}}
$$

(c) $\frac{\sin 3 \theta}{\operatorname{Sin} \theta}-\frac{\operatorname{Cos} 3 \theta}{\operatorname{Cos} \theta}=2$
(ii) The measure of the two sides of a triangle are 4 and 5 units .

Find the third side so that the area of the triangle is 6 square units.

OR

In the expansion of $\left(x^{2}+\frac{1}{x}\right)^{m} ; m \in N$, the binomial coefficients of the fourth and the thirteenth terms are equal to each other, find the eleventh term.

