BOARD OF INTERMEDIATE EDUCATION, KARACHI

H.S.C. Annual Examinations 2021

MATHEMATICS PAPER-I (MODEL PAPER)

(Science Pre – Engineering & Science General Groups)

REVISED

Max marks: 50

SECTION A

(Multiple Choice Questions)

Time: 30 minutes

NOTE: This question consists of 25 part questions and all are to be answered. Each part question carries TWO marks.

Q.1. Select the correct answer from the given options.

(i) Let
$$A = \{0, 1\}, B = \{1, 2\}, C = \{2, 3\}.$$
 Then $A \times (B \cap C) = :$ $\phi * \{(1, 3), (0, 1)\} * \{(0, 2), (1, 2)\} * \{(2, 3), (1, 1)\}$

- (ii) If A and B are subsets of a set U such that $A \cup B = U$, then the sets A and B are called:
 - * Exhaustive sets * Disjoint sets * Equal sets * Unequal sets
- (iii) Multiplicative inverse of z = 3-4i is

*
$$\frac{3}{5} + \frac{i4}{5}$$
 * $\frac{3}{5} + \frac{i4}{5}$ * $\frac{3}{5} + \frac{i4}{25}$ * $\frac{3}{5} + \frac{4}{5}$

- (iv) Factors of $4x^2 + 9$ y are: **KARACHI*** $(2x + i 3y) (2x i 3y) * (2x + 3y) (2x 3y) * (2x + 3iy)^2$ * (4x + 9yi) (4x 9yi)
- (v) If $z_1 = 3 + 2i$ and $z_2 = 5 2i$, then real part of $z_1 \cdot z_2$ is: * 4 * - 19 * - 4 * 19
- (vi) If $b^2 4ac < 0$, then the roots of a quadratic equation are: *equal and complex * unequal and complex * unequal and real

- (vii) The product of all cube roots of 27 is : * zero * 1 * 27 * ω
- (ix) If α , β are the roots of the equation y^2 5y + 9 = 0, then value of $\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}}$ is: $*0 * \frac{5}{9} * \frac{5}{3} * \frac{9}{5}$
- (x) Sum of first n terms of 2, 4, 6, is: * $n^2 + n$ * n^2 * $\frac{n}{2}$ * $n^2 - n$
- (xi) 1, x^2 , $6-x^2$ will form a G.P. if x = : * 8
- (xii) The H.M. between $\frac{1}{2}$ and $\frac{1}{4}$ is $\frac{1}{6}$ * $\frac{1}{8}$ * $\frac{1}{3}$ * $\frac{1}{5}$
- (xiii) If 1/15,1/20,1/25 are in H.P. then 15,20,25 will be in: * H.P. * A.P. * G.P. * both A.P. and H.P.
- (xiv) The number of ways in which 7 persons can be seated around a table is:

 * 6! * 7! * 7P₇ * 7C₇
- (xv) If $(a+b)^{11}$, then it will contain: *11 terms * 13 terms * 10 terms * 12 terms
- (xvi) If (a+b)¹³, then middle terms/middle term will be:

 * 7th term & 8th term * 8th term

 * 7th term * 8th term

- (xvii) If $(a+b)^n$; $n \in N$, then $T_{r+1} = :$ (r = 0,1,2,....n)

- (xviii) Arc length of semi circle of a unit circle is:
 - * 2π
- * 3π

- (xix) Sin 2 θ = :

- (xx) $\cos u \cos v = :$
 - * 2 Cos $\frac{u+v}{2}$ Sin $\frac{u-v}{2}$
 - * 2 Cos $\frac{u+v}{2}$ Cos $\frac{u-v}{2}$
- (xxi) Tan $(\frac{\pi}{2} + \theta)$
- * Cosθ
- * Cot θ

(xxii) In a ΔABC

- a = b = c, then $\Delta = :$
- * $\frac{\sqrt{3}}{2}a$

* $\frac{\sqrt{3}}{4}a^2$

Tan θ

- (xxiii) If in a $\triangle ABC$, the angle A is at standard position, then Law of cosine is:
 - $* a^2 = b^2 + c^2 bc \cos \alpha$
- * $a^2 = b^2 + c^2 + 2bc \cos \alpha$
- * $b^2 = a^2 + c^2 bc \cos \alpha$
- * $a^2 = b^2 + c^2 2bc \cos \alpha$

(xxiv) In a
$$\triangle ABC$$
, $\sin \frac{\alpha}{2} = \dots$

$$* \sqrt{\frac{(s-b)(s-c)}{bc}} * \sqrt{\frac{(s-a)(s-b)}{ab}} * \sqrt{\frac{(s-a)(s-c)}{ac}} * \frac{\Delta}{s-a}$$
(xxv) If $\sin x = \frac{1}{2}$, then $x = \frac{\pi}{3}$, $\frac{2\pi}{3}$ * $\frac{\pi}{6}$, $\frac{5\pi}{6}$ * $\frac{\pi}{2}$, $-\frac{\pi}{2}$ * $\frac{\pi}{4}$, $\frac{-\pi}{4}$

TIME: One and Half hours

SECTION 'B' **SHORT -ANSWER QUESTIONS (30 Marks)**

MARKS: 50

Note: Answer any six part questions from this section, selecting two part questions from each question.

Complex numbers and Algebra

- Solve the complex equation $(x + 2y i)^2 = x i$ Q.2. (i)
 - (ii)
 - Show that z = 1 + i and z = 1 i satisfy the equation $z^2 2z + 2 = 0$ Find all the cube roots of 125, also show that their sum is zero (iii)
 - and their product is 125. If α , β are the roots of $8x^2-6x+$ whose roots are $\alpha-3$, $\beta-3$. 3 0, form an equation (iv)
- O.3. (i)
- If ${}^{n}P_{3} = 12^{\frac{n}{2}}P_{3}$ find n. The 2^{nd} , 31^{st} and the last terms of an A.P. are $\frac{31}{4}$, $\frac{1}{2}$ and $\frac{-13}{2}$ (ii) respectively. Find the number of terms.

 Find the sum of the 1st n terms of 5 + 55 + 555 +
 - (iii)
 - Prove by mathematical induction. (iv) $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{1}{3} n (2n-1)(2n+1),$ ∀nεN.

Trigonometry

- If a point on the rim of a 16 cm diameter fly wheel travels 7000 Q.4. (i) meters in a minute, through how many radians does the wheel turn in two seconds?
 - Prove that: $1 + \cot^2 \frac{\pi}{3} = \operatorname{Cosec}^2 \frac{\pi}{3}$ (without using calculator) (ii)

For any triangle ABC, Derive the law of tangent. (iii)

OR

For any triangle ABC, show that $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$

 $2 \sin^2 x + 2 \sqrt{2} \sin x - 3 = 0$ Solve: (iv)

SECTION 'C' (DETAILED-ANSWER QUESTIONS) (20 Marks)

Note: Attempt any two questions from this sectioon

- Which term of the H.P. 6, 2, $\frac{6}{5}$, is equal to $\frac{2}{33}$? Q.5. (i)
 - Find the term independent of x in $\left(\sqrt{x} \frac{2}{x^2}\right)^{10}$ OR

 Find the middle term in the expansion of $\left(\frac{a}{y} \frac{y}{a}\right)^{12}$ (ii)

- Three points A, B, C form a triangle such that ratio of the Q.6. (i) measure of their angles is 1:2:3, find the ratio of lengths of the sides.
 - Solve the system of the equations (ii)
- Prove any two of the following DUCATION Q.7. (i)
 - $\begin{array}{ccc} (b) & \frac{Sin\theta + Sin\varphi}{Sin\theta Sin\varphi} & = & \frac{Tan\frac{\theta + \varphi}{2}}{Tan\frac{\theta \varphi}{2}} \end{array}$ (a) $\cos 4x = 8 \cos^4 x - 8 \cos^2 x + 1$
 - (c) $\frac{\sin 3\theta}{\sin \theta} \frac{\cos 3\theta}{\cos \theta} = 2$
 - (ii) The measure of the two sides of a triangle are 4 and 5 units. Find the third side so that the area of the triangle is 6 square units.

OR

In the expansion of $(x^2 + \frac{1}{x})^m$; $m \in \mathbb{N}$, the binomial coefficients of the fourth and the thirteenth terms are equal to each other, find the eleventh term.